Predicting corporate financial distress based on integration of support vector machine and logistic regression

نویسندگان

  • Zhongsheng Hua
  • Yu Wang
  • Xiaoyan Xu
  • Bin Zhang
  • Liang Liang
چکیده

The support vector machine (SVM) has been applied to the problem of bankruptcy prediction, and proved to be superior to competing methods such as the neural network, the linear multiple discriminant approaches and logistic regression. However, the conventional SVM employs the structural risk minimization principle, thus empirical risk of misclassification may be high, especially when a point to be classified is close to the hyperplane. This paper develops an integrated binary discriminant rule (IBDR) for corporate financial distress prediction. The described approach decreases the empirical risk of SVM outputs by interpreting and modifying the outputs of the SVM classifiers according to the result of logistic regression analysis. That is, depending on the vector’s relative distance from the hyperplane, if result of logistic regression supports the output of the SVM classifier with a high probability, then IBDR will accept the output of the SVM classifier; otherwise, IBDR will modify the output of the SVM classifier. Our experimentation results demonstrate that IBDR outperforms the conventional SVM. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market

Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...

متن کامل

Exploiting Corporate Governance and Common Size Analysis for Financial Distress Detecting Models

Traditionally, statistical techniques such as multivariate discriminant analysis and logistic regression analysis have been applied for predicting financial distresses by analyzing financial ratios. In addition to statistical methods, recent studies suggest that backpropagation neural networks (BPNs) and support vector machines (SVMs) can be alternative approaches for classification tasks. Henc...

متن کامل

A Novel Ensemble Learning Approach for Corporate Financial Distress Forecasting in Fashion and Textiles Supply Chains

This paper proposes a novel ensemble learning approach based on logistic regression (LR) and artificial intelligence tool, i.e. support vector machine (SVM) and back-propagation neural networks (BPNN), for corporate financial distress forecasting in fashion and textiles supply chains. Firstly, related concepts of LR, SVM and BPNN are introduced. Then, the forecasting results by LR are introduce...

متن کامل

Bayesian kernel based classification for financial distress detection

Corporate credit granting is a key commercial activity of financial institutions nowadays. A critical first step in the credit granting process usually involves a careful financial analysis of the creditworthiness of the potential client. Wrong decisions result either in foregoing valuable clients or, more severely, in substantial capital losses if the client subsequently defaults. It is thus o...

متن کامل

Comparing Traditional Statistics, Decision Tree Classification And Support Vector Machine Techniques For Financial Bankruptcy Prediction

Recently, several spectacular bankruptcies, including Fannie Mae, Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers, have caught the world by surprise. To improve the accuracy of financial distress predictions, this research compares traditional statistical methods (i.e., linear discriminant analysis, logistic regression), decision tree classification methods (i.e., C5.0, CART,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2007